Stochastic Korovkin Theory given Quantitatively

نویسنده

  • George A. Anastassiou
چکیده

We introduce and study very general stochastic positive linear operators induced by general positive linear operators that are acting on continuous functions. These are acting on the space of real differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related stochastic Shisha–Mond type inequalities of L-type 1 ≤ q < ∞ and corresponding stochastic Korovkin type theorems. These are regarding the stochastic q-mean convergence of a sequence of stochastic positive linear operators to the stochastic unit operator for various cases. All convergences are produced with rates and are given via the stochastic inequalities involving the stochastic modulus of continuity of the n−th derivative of the engaged stochastic process, n ≥ 0. The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our stochastic Korovkin theory. We give an application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Multivariate Random Korovkin Theory

We introduce and study the very general multivariate stochastic positive linear operators induced by general multivariate positive linear operators that are acting on multivariate continuous functions. These are acting on the spaces of real differentiable multivariate time stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related ...

متن کامل

Statistical Convergence Applied to Korovkin-type Approximation Theory

We present two general sequences of positive linear operators. The first is introduced by using a class of dependent random variables, and the second is a mixture between two linear operators of discrete type. Our goal is to study their statistical convergence to the approximated function. This type of convergence can replace classical results provided by Bohman-Korovkin theorem. A particular c...

متن کامل

BANACH SPACES , OPERATORS AND ALGEBRAS Abstracts of talks

The origin of Korovkin Approximation theory is the classical theorem of P.P. Korovkin (1953),which says that for a sequence (Tn) of positive linear operators on C[a, b], in order to conclude the uniform convergence of Tnf to f for all f ∈ C[a, b], it suffices to check the uniform convergence only for the three functions f ∈ {1, x, x2}. Starting from this beautiful result many mathematicians hav...

متن کامل

Qualitative Korovkin-Type Results on Conservative Approximation

The well-known result of Korovkin [4] states that for a sequence of positive linear operators [Kn]n 1 , such that Kn f converges uniformly to f in the particular cases f (t)=1, f (t)=t, and f (t)=t, then it also converges for every continuous real function f. The set [1, t, t] is called a Korovkin set. This result was a starting point for the development of a related theory. Since then many pap...

متن کامل

On Basic Fuzzy Korovkin Theory

We prove the basic fuzzy Korovkin theorem via a fuzzy Shisha– Mond inequality given here. This determines the degree of convergence with rates of a sequence of fuzzy positive linear operators to the fuzzy unit operator. The surprising fact is that only the real case Korovkin assumptions are enough for the validity of the fuzzy Korovkin theorem, along with a natural realization condition fulfill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007